
Hard Cases Detection in Motion Prediction by
Vision-Language Foundation Models

Yi Yang1,2, Qingwen Zhang1, Kei Ikemura1, Nazre Batool2, John Folkesson1

1 KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
2 Scania AB, Södertälje, 151 87, Sweden

Abstract. Addressing hard cases in autonomous driving, such as anoma-
lous road users, extreme weather conditions, and complex traffic inter-
actions, presents significant challenges. To ensure safety, it is crucial to
detect and manage these scenarios effectively for autonomous driving
systems. However, the rarity and high-risk nature of these cases demand
extensive, diverse datasets for training robust models. Vision-Language
Foundation Models (VLMs) have shown remarkable zero-shot capabili-
ties as being trained on extensive datasets. This work explores the poten-
tial of VLMs in detecting hard cases in autonomous driving. We demon-
strate the capability of VLMs such as GPT-4v in detecting hard cases in
traffic participant motion prediction on both agent and scenario levels.
We introduce a feasible pipeline where VLMs, fed with sequential image
frames with designed prompts, effectively identify challenging agents or
scenarios, which are verified by existing prediction models. Moreover, by
taking advantage of this detection of hard cases by VLMs, we further im-
prove the training efficiency of the existing motion prediction pipeline by
performing data selection for the training samples suggested by GPT. We
show the effectiveness and feasibility of our pipeline incorporating VLMs
with state-of-the-art methods on NuScenes datasets.

1 Introduction

Recent advancements in deep learning have driven rapid progress in the field
of autonomous driving. One of the challenges remains in addressing complex
and unpredictable scenarios, such as dealing with unusual road user behaviors,
navigating extreme weather conditions, responding to emergencies, and manag-
ing intricate interactions. These challenging situations pose substantial safety
concerns due to the sparsity in the whole dataset and high variability [23].

Existing approaches to address this include collecting more real-world data
[2, 8, 17, 21] or generating synthetic data conditioned on specific needs using
generative models [12, 16, 26], or reconstructing 3D environments [10, 18, 25].
However, these methods can be expensive and require substantial human in-
tervention. Incremental learning has limitations in interpretability and sample
identification [13,22]. This raises the question: is there a more explainable and
independent method available?
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The surprising zero-shot capabilities of large language models (LLMs) and
vision-language foundation models (VLMs) [1, 3, 14, 15, 19, 20] have sparked in-
terest in leveraging these models for autonomous driving [5,6,11,24,27]. Rather
than replacing the existing pipeline, an intriguing question is how current meth-
ods can benefit from integrating these powerful models.

Therefore, in this paper, we explore leveraging VLMs for detecting
hard cases at both the agent-level and scene-level, focusing on motion
prediction. At the agent-level, the goal is to identify road users with unex-
pected behaviors, which often cause current algorithms to fail resulting in large
prediction displacement errors. At the scene-level, it is useful to pinpoint chal-
lenging scenarios, such as unusual traffic patterns, emergencies, extreme weather
conditions, etc. These scenarios often pose difficulties for existing motion pre-
diction networks. Therefore, having a pipeline that can recognize and be aware
of potential failure is crucial.

We summarize our key contributions: (a) We introduce a feasible pipeline
to leverage VLM to detect hard cases in autonomous driving contexts; (b) We
verify the detection capability of VLM using existing prediction networks; (c)
We demonstrate that by detecting hard cases, VLM can facilitate more efficient
network training via proper data selection.

Fig. 1: Two-stages of evaluations. Stage 1: Verify the ability of VLM to detect
hard cases, using existing motion prediction results as ground truth. We examine if the
VLM’s prediction of the most difficult-to-predict agents matches the order based on the
highest displacement error in existing motion prediction networks. Stage 2: Improve
training efficiency by training the network with a smaller subset of data selected by
VLM.

2 Methodology and Experiments

We evaluate our hypothesis in two stages (Fig. 1).
The first stage verifies the capability of vision-language models (VLMs) to

detect hard cases in motion prediction, using existing prediction networks as a
benchmark. Our approach focuses on prediction networks that use raw sensor
data, particularly camera images, which provide richer visual information for
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VLM prompts design with test images.

a) System You are a mature driver behind the wheel. You will see consecutive frames. Each frame
has six images captured and put together by the surround view camera in your vehicle.
The field of view (FOV) of each surround-view camera is approximately 120°. The view
angle is written in the images. On the right, it is the bird-eye-view image with labeled
agents, centered on your vehicle. The HD map is also plotted in the bird-eye-view image.
You need to answer the following questions:

Question 1: Among all objects, which objects might have abnormal moving behavior that
you might need to pay more attention to? Rank it from the most difficult to predict to
the least difficult.

Question 2: Score the difficulty of prediction from 1 to 10, where 1 is the easiest and
10 is the most difficult. If the traffic is very dense and at the crossroads or it is
bad weather, you might give it a high score. If it is a straight road with few vehicles,
it is easy to predict, you might give it a low score. If there is an anomalous behavior
or situation, you might give it a high score.

Present your answers in this format:

1. The most difficult to predict agents’ rank is [A1, A2, A3, A4, A5, A6, A7, A8].
<explanation> Replace A1-A8 with the agent ID number, and make sure the output includes
all agents.

2. Overall, the prediction difficulty is <score>. From 1 to 10. <explanation>

b) Assistant [A few shots are provided to instruct GPT-4V.]

c) User [Evaluate on test images.]
There are 5 different IDs of agents in these images. From ID 1 to ID 5, they are
pedestrian, pedestrian, car, motorcycle, and pedestrian.

GPT-4v [14] Output:
1: The most difficult to predict agents’ rank is [4, 1, 2, 5, 3]. Explanation:
Motorcycle 4 is in motion and could change speed or direction suddenly, making it
unpredictable. Pedestrian 1 is close to the crosswalk and might decide to cross the
street, which requires attention. Pedestrian 2 is also near the crosswalk and could
potentially enter the street. Pedestrian 5 is walking along the sidewalk and seems
less likely to enter the street suddenly. Car 3 is parked and not showing any signs of
movement, making it the least difficult to predict.

2: Overall, the prediction difficulty is 5. Explanation: The road is not very busy,
and most agents are behaving predictably. However, the presence of pedestrians near the
crosswalk and a moving motorcycle increases the level of caution required.

Table 1: Designed prompts for our approach. a) GPT-4v [14] is instructed to answer
two questions with certain format. b) Few-shot learning: two examples are provided
to VLM to learn. c) Given inputs that include 3 frames of consecutive camera images
from six different views and their description, GPT-4v outputs the answer in a required
format along with explanations. Here we show a real output from GPT-4v, where it cor-
rectly associates most agents with corresponding marks and types, and reasons about
their respective states. In addition, descriptive texts are given to reason the generated
ranking of agents and difficulty score of the scene, showing superior explainability.
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hard case detection. For each image sequence, the prediction models generate
agent trajectories, which are ranked by average displacement error (ADE) from
ground truth. Concurrently, the same images are fed into GPT-4v [14] VLM
alongside prompts to rank agents by prediction difficulty, score scenario difficulty,
and provide explanations as demonstrated in Tab. 1. Few-shot learning [4] is used
to enhance VLM accuracy. We assess VLM’s accuracy in mirroring the difficulty
rankings of the existing prediction model using various ranking metrics. The
results in Fig. 2, show that GPT-4v demonstrates robust performance across all
evaluation metrics, outperforming over 90% of random rankings.

In the second stage, the study demonstrates the utility of VLM-based hard
case detection for efficient data selection. A subset of difficult scenes identified
by the VLM (Fig. 3) is used to train prediction models, and their performance is
compared to models trained on the full dataset. Detailed quantitative results are
provided in the original paper. The approach tests VLMs’ potential to improve
training efficiency by creating a smaller, yet representative portion of the training
dataset.

Fig. 2: Result of agents ranking according to higher prediction error / difficulty. Us-
ing the UniAD [9] ranking as ground truth, we compare it with random order, order
from ViP3D [7], and GPT-4v. The evaluation is conducted using four metrics: C-index,
NDCG, top-5 accuracy, and Kendall’s Tau, where larger values indicate a higher cor-
relation with UniAD order. The x-axis is the metric value. Note that for the random
ordering, we conducted 10,000 trials, and the distribution of the results is shown in
the blue histogram, with the y-axis representing the probability density / frequency;
note that the metric value of random is the mean from all trials. The percentage values
above the graph indicate the percentage of random trials that are surpassed by this
value (cumulative probability).

(a) GPT-4v: Prediction difficulty is 9. Nighttime and wet
conditions reduce visibility and alter vehicle behavior, with
light reflections complicating movement prediction of other
road users. The scene’s complexity is heightened by multiple
vehicles and a pedestrian crossing.

(b) GPT-4v: Prediction difficulty is 7. The intersection
setting includes traffic lights and crosswalks. A large truck
could block views and impede movement, alongside multiple
vehicles and pedestrians, increasing prediction difficulty
due to potential blind spots and varied road users.

Fig. 3: Two real examples scored by GPT-4v. Higher scores denote greater difficulty.
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